Customize Consent Preferences

We use cookies to help you navigate efficiently and perform certain functions. You will find detailed information about all cookies under each consent category below.

The cookies that are categorized as "Necessary" are stored on your browser as they are essential for enabling the basic functionalities of the site. ... 

Always Active

Necessary cookies are required to enable the basic features of this site, such as providing secure log-in or adjusting your consent preferences. These cookies do not store any personally identifiable data.

No cookies to display.

Functional cookies help perform certain functionalities like sharing the content of the website on social media platforms, collecting feedback, and other third-party features.

No cookies to display.

Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics such as the number of visitors, bounce rate, traffic source, etc.

No cookies to display.

Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.

No cookies to display.

Advertisement cookies are used to provide visitors with customized advertisements based on the pages you visited previously and to analyze the effectiveness of the ad campaigns.

No cookies to display.

What Type of FOG IMU Can Be Used for Space Applications?

Space-grade FOG IMUs require ultra-low bias drift (typically below 0.01 deg/h), exceptional precision with an angular random walk (ARW) below 0.01 deg/√h, shock tolerance up to 10,000g, and operating temperature ranges of -40°C to +70°C, with further customizations for specific needs.

The Ultimate Guide to Fiber Optic Gyroscopes (FOG)

A fiber optic gyroscope (FOG) is a precision sensor that measures rotation using the Sagnac effect, where light in coiled optical fibers detects changes in angular velocity. This non-mechanical gyroscope offers high stability and accuracy in challenging environments, making it ideal for applications like aerospace navigation, satellite attitude control, robotics, and autonomous vehicles.

Top 10 Inertial Measurement Unit (IMU) Manufacturers in the World

The data in this guide comes from a combination of sources: interviews with industry experts, customer feedback, and extensive research into IMU technologies. Information was also sourced from official websites and detailed articles by industry journalists. This comprehensive approach ensures accuracy and reliability in the information provided.

How Accurate is the Inertial Measurement Unit (IMU)?

IMU accuracy depends largely on the grade of the sensor. Consumer-grade IMUs typically offer 10 to 100 degrees/hour precision, while industrial-grade IMUs improve this to 1 to 10 degrees/hour. Tactical-grade IMUs provide even better accuracy, ranging from 0.1 to 1 degree/hour, and are suited for military applications. Finally, navigational-grade IMUs offer the highest precision, with less than 0.01 degrees/hour, ideal for aerospace and defense.

What is an IMU Sensor?

An IMU sensor plays a central role in modern navigation systems by measuring an object’s acceleration, angular rate, and sometimes magnetic field to give precise movement data. It ensures stable, accurate motion tracking, making it indispensable in a wide range of high-tech applications.